Making Games, Making Literacy: A Case-Study in Formal Educational Contexts

Carla Sousa, Daniel Cardoso, Conceição Costa, & Kathleen Tyner

12th European Conference on Game Based Learning
Sophia Antipolis, France
5th October 2018
GamiLearning (2015-2018)

Main Goal
To explore digital game creation as a promoter of Media and Information Literacy (MIL) in formal educational contexts

- Assess the effectiveness of the intervention
- Document the process in a comprehensive manner
MIL Framework

MIL is central in a highly mediatized society

Enables students to:

• Understand how the media operate;
• How they construct meaning;
• How they can be used;
• How to evaluate information.
MIL Framework

Requires a wide set of skills

- **Operational skills** (including coding and computing);
- **Editorial skills** (including multimedia writing-reading-producing and mixing);
- **Organisational skills** (including navigating, sorting, filtering, evaluating) (Frau-Meigs, 2014);
- **Sociocultural component**, implying that people don’t create meanings individually, but as members of “interpretive communities” (Livingstone et al., 2013);
- **Digital identity management skills**, relevant to reflect the ability of individuals manage their e-presence in a safe and sustained manner (Costa et al., 2017).
MIL, media creation and play

• Promotion of MIL requires immersion in the learning process, namely in an environment that allows experimentation of different roles, and evokes a critical dimension of knowledge (Tuominen and Kotilainen, 2012, p. 17)

“What did I learn about media through this exercise?”
Pedagogical Strategies

- Constructionism
- Project-Based Learning (PBL)
- Experiential Learning
- Learning through Game Creation
Affordances and Constraints

• Dominance of essentialist educational practices:
 – Marginalizes the individual interests of students and focuses on the role of experts who efficiently teach the same disciplinary and practical subject matter for all students (Bagley, 1905)

• Problems with the design of the learning space (Madill and Sanford, 2007)
Aim of this study

Discuss the challenges of implementing a game creation learning strategy to approach MIL.

Reflecting on how different affordances and constraints, such as classroom’s design, setting and adopted pedagogical strategies impact the learning process.
Sample

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>Total Sample (N = 45)</td>
<td>M = 9.98</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>SD = 0.583</td>
<td></td>
</tr>
<tr>
<td>School 1 (N = 20)</td>
<td>M = 9.70</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SD = 0.470</td>
<td></td>
</tr>
<tr>
<td>School 2 (N = 6)</td>
<td>M = 10.00</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SD = 0.000</td>
<td></td>
</tr>
<tr>
<td>School 3 (N = 19)</td>
<td>M = 10.26</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>SD = 0.653</td>
<td></td>
</tr>
</tbody>
</table>
Intervention

• Once per week in each participant schools
• Sessions ranging between 45 and 90 minutes
• Total intervention ranged between 4 months and an entire school year (9 months)

Aiming the promotion of MIL, with a specific emphasis in Digital Identity Management Skills
Intervention

<table>
<thead>
<tr>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animated Stories creation using Scratch</td>
</tr>
<tr>
<td>Game remix using Scratch</td>
</tr>
<tr>
<td>Algorithm Game</td>
</tr>
<tr>
<td>Caesar’s Cipher Game</td>
</tr>
</tbody>
</table>
Games remix using Scratch
Algorithm Game

Game Design Process... in the Beginning:

CODE TO SNACK

1. **Robot make me a Snack!**
 - For the Robot to make my snack, I need to turn it on and program it. Your table is going to be the counter where he will work later on. And you can have some appliances, but don’t forget to identify them.

2. **1° Decide what you want to snack.**

3. **2° Work on the programming, that is describing each step on the sheet.**

4. **3° One each sheet of the notepad, draw want you need to cook or to eat with and identify it.** You can create a refrigerator and a pantry shelf to pack the food and the necessary supplies.

5. **4° Turn on your robot to test your code, so you can find out if there are any bugs that you need to put straight.**

Material needed per student:

- 2 sheets of paper (A4)
- pencil and eraser
- 1 sticky blank notepad
Playing Digital Security
Data Collection

- Every project session had the presence of a researcher, carrying out a participant observation procedure, through the filling of the developed observation grids.

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
</tr>
<tr>
<td>Adequation to student’s language level (difficulties vs autonomy)</td>
</tr>
<tr>
<td>Behavioral observation</td>
</tr>
<tr>
<td>Content apprehension/content production</td>
</tr>
<tr>
<td>Other aspects/observations</td>
</tr>
</tbody>
</table>
Data Analysis

• Content analysis of the 58 observation grids was performed using NVIVO version 11

• Coding System = created via an iterative process
 – Bottom-up (non-systematic reading of all the grids)
 – Top-down (theoretical framework)
Results

MIL promotion

• Editorial skills were mainly promoted by gaming remix (32%) and by story creation (59%), both using Scratch

• Operational Skills were mainly promoted by the Algorithm Game (32%)

• Using Scratch was the most MIL-intensive activity
Results

Autonomy vs Difficulties

• Digital identity management skills were the ones where students demonstrated more autonomy (71%)

• Editorial skills (59% of the observations coded as autonomous work)

• Operational skills (54% of the observations coded as autonomous work).
Results

Pedagogical Strategies

• Editorial and operational skills were derived mainly through PBL (accounting for 69% and 88%)

• Digital identity management was encouraged mainly via guided reflection (77%)

• Expository lecture was not observed as relevant in the development of MIL skills
Results

Engagement

• Higher in tasks that aim the promotion of digital identity management skills

• Very frequently coincides with peer cooperation

• Peer cooperation promotes more simultaneous types of skills than student-teacher interaction
Results

Constraints

Design of the learning space

• Lack of computers (each computer had to be shared by two or more students)
• All the computers were “fixed place” desktops
• Rooms were small and full of tables
• Access issues (wi-fi frequently unavailable)

Platform Usability

• Login issues
Conclusions

• Digital game creation can be understood as a relevant pedagogical strategy in the promotion of MIL
 – MIL requires the development of reflexive knowledge: a child needs to know a topic very well to be able to produce a related game
 – Promotes engagement in collaboration and peer-learning, which has been shown to support critical literacy and learning across the curriculum
 – Game design and content creation provides opportunities to integrate and reflect on the everyday media experience
Conclusions

Digital Game Creation

Goal-driven and student centered pedagogy, to empower students in constructing their knowledge in a collaborative environment
Conclusions

• Constraints with the design of the learning space are aligned with previous studies (Madill and Sanford, 2007)

– Change of pedagogical approaches must be accompanied by changes on the physical space, to better incorporate innovation.
Thank you

carla.patricia.sousa@ulusofona.pt
References